Functional Role of Lanthanides in Enzymatic Activity and Transcriptional Regulation of Pyrroloquinoline Quinone-Dependent Alcohol Dehydrogenases in Pseudomonas putida KT2440
نویسندگان
چکیده
The oxidation of alcohols and aldehydes is crucial for detoxification and efficient catabolism of various volatile organic compounds (VOCs). Thus, many Gram-negative bacteria have evolved periplasmic oxidation systems based on pyrroloquinoline quinone-dependent alcohol dehydrogenases (PQQ-ADHs) that are often functionally redundant. Here we report the first description and characterization of a lanthanide-dependent PQQ-ADH (PedH) in a nonmethylotrophic bacterium based on the use of purified enzymes from the soil-dwelling model organism Pseudomonas putida KT2440. PedH (PP_2679) exhibits enzyme activity on a range of substrates similar to that of its Ca2+-dependent counterpart PedE (PP_2674), including linear and aromatic primary and secondary alcohols, as well as aldehydes, but only in the presence of lanthanide ions, including La3+, Ce3+, Pr3+, Sm3+, or Nd3+ Reporter assays revealed that PedH not only has a catalytic function but is also involved in the transcriptional regulation of pedE and pedH, most likely acting as a sensory module. Notably, the underlying regulatory network is responsive to as little as 1 to 10 nM lanthanum, a concentration assumed to be of ecological relevance. The present study further demonstrates that the PQQ-dependent oxidation system is crucial for efficient growth with a variety of volatile alcohols. From these results, we conclude that functional redundancy and inverse regulation of PedE and PedH represent an adaptive strategy of P. putida KT2440 to optimize growth with volatile alcohols in response to the availability of different lanthanides.IMPORTANCE Because of their low bioavailability, lanthanides have long been considered biologically inert. In recent years, however, the identification of lanthanides as a cofactor in methylotrophic bacteria has attracted tremendous interest among various biological fields. The present study reveals that one of the two PQQ-ADHs produced by the model organism P. putida KT2440 also utilizes lanthanides as a cofactor, thus expanding the scope of lanthanide-employing bacteria beyond the methylotrophs. Similar to the system described in methylotrophic bacteria, a complex regulatory network is involved in lanthanide-responsive switching between the two PQQ-ADHs encoded by P. putida KT2440. We further show that the functional production of at least one of the enzymes is crucial for efficient growth with several volatile alcohols. Overall, our study provides a novel understanding of the redundancy of PQQ-ADHs observed in many organisms and further highlights the importance of lanthanides for bacterial metabolism, particularly in soil environments.
منابع مشابه
Engineering thermal stability and solvent tolerance of the soluble quinoprotein PedE from Pseudomonas putida KT2440 with a heterologous whole‐cell screening approach
Due to their ability for direct electron transfer to electrodes, the utilization of rare earth metals as cofactor, and their periplasmic localization, pyrroloquinoline quinone-dependent alcohol dehydrogenases (PQQ-ADHs) represent an interesting class of biocatalysts for various biotechnological applications. For most biocatalysts protein stability is crucial, either to increase the performance ...
متن کاملRegulation of Pyrroloquinoline Quinone-Dependent Glucose Dehydrogenase Activity in the Model Rhizosphere-Dwelling Bacterium Pseudomonas putida KT2440.
UNLABELLED Soil-dwelling microbes solubilize mineral phosphates by secreting gluconic acid, which is produced from glucose by a periplasmic glucose dehydrogenase (GDH) that requires pyrroloquinoline quinone (PQQ) as a redox coenzyme. While GDH-dependent phosphate solubilization has been observed in numerous bacteria, little is known concerning the mechanism by which this process is regulated. H...
متن کاملEnhancement of Pyrroloquinoline Quinone Production and Polyvinyl Alcohol Degradation in Mixed Continuous Cultures of Pseudomonas putida VM15A and Pseudomonas sp. Strain VM15C with Mixed Carbon Sources.
In a mixed continuous culture of Pseudomonas putida VM15A and Pseudomonas sp. strain VM15C with polyvinyl alcohol (PVA) as the sole source of carbon, growth of the PVA-degrading bacterium VM15C and, hence, PVA degradation were limited by the growth factor, pyrroloquinoline quinone, produced by VM15A. Feeding of a carbon source for VM15A, ethanol, with PVA enhanced pyrroloquinoline quinone produ...
متن کاملCrystal structure of PqqB from Pseudomonas putida at 2.2 Å resolution
Pyrroloquinoline quinone (PQQ) is an important redox-active cofactor for many bacterial dehydrogenases. It’s biosynthetic pathway involves six or seven genes, one of which is pqqB. Former studies indicated that the protein encoded by pqqB, namely PqqB, functions as a PQQ transporter. Here we report the crystal structure of PqqB from Pseudomonas putida at 2.2 Å resolution together with functiona...
متن کاملMechanisms of resistance to chloramphenicol in Pseudomonas putida KT2440.
Pseudomonas putida KT2440 is a chloramphenicol-resistant bacterium that is able to grow in the presence of this antibiotic at a concentration of up to 25 μg/ml. Transcriptomic analyses revealed that the expression profile of 102 genes changed in response to this concentration of chloramphenicol in the culture medium. The genes that showed altered expression include those involved in general met...
متن کامل